Définition 13 (combinaison linéaire).
Soient dy,ds,...,d, € R™ et A,..., A, € R. Alors le vecteur b défini
par

est appelé combinaison linéaire des a; et les \; sont dits les coefficients
de la combinaison linéaire.

Remarques

1) Certains des A; peuvent étre nuls ou négatifs.

2) Les combinaisons linéaires donnent lieu a deux types de problémes :
- soit on connait les coefficients \; et les vecteurs a; et on cherche a
calculer les composantes de la combinaison linéaire b ;

- soit on connait les vecteurs a; et b et on cherche a déterminer les
coefficients \; (s'il s existent!).

Liens systémes - matrices - équations vectorielles

Exemple On considére les vecteurs suivants dans R? :

3 -3 —2 -1
aa=\|4,aa=|-1]),a3=1 3 |,b=1]—-1
—2 4 3 3

Le vecteur b peut-il s’exprimer comme combinaison linéaire des vecteurs
ai, az, az?
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Suite de I'exemple

Généralisation

a1y + -+ a1y

Am1T1 + -+ AmnTn
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Théoréme 3. Une équation vectorielle

a le méme ensemble de solutions que le systéme linéaire correspondant
a la matrice augmentée

Remarque
Si le systéme admet une solution, alors b est combinaison linéaire des
vecteurs colonnes de la matrice A.

Exemple
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Ensembles engendrés par des vecteurs

Ensemble engendré par un vecteur de R?

Ensemble engendré par deux vecteurs de R?
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Définition 14 (span ou vect).

Soient v1,...,7, des vecteurs de R". L’ensemble des combinaisons li-
néaires de v, . .., v, s’appelle le span. On le note
Remarques

Ezercice additionnel, voir Moodle.

Exemple 1
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Exemple 2
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1.5 Equation matricielle
But

Définition 15 (Produit matrice-vecteur).
Soient A une matrice m x n et ¥ € R". On définit le produit Ax par

Exemples

Remarque
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Lien entre produit matriciel et systémes d’équations
linéaires
Exemple Soit
201 — a9+ 323 =1
S = 4$1—2$2+l‘3:0

1+ 19+ a3 = -8

On a
2 —1 3 1
A=14 -2 1 |; b=
1 1 1 -8

On peut écrire le systéme comme
1) le systéme d’équations linéaires S
2) la matrice augmentée

3) une équation vectorielle

4) une équation matricielle

Toutes ces représentations ont le méme ensemble de solutions. On utili-
sera principalement la notation 4). Pour la résolution, on aura recours a
la représentation 2) et l'algorithme de Gauss-Jordan.

Définition 16 (équation matricielle).
Soient A une matrice m x n et b € R™ et ¥ € R". Alors I'équation
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